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Abstract. We study the spectral and localizaton propemies of tight-binding chains with randomly 
distributed binary blocks of si= m; one having site energies EA and the other EB. 
respectively. We demonstrate that for block size m greater than one and S = IQ - 6 ~ 1  less than 
a critical value &(m) perfect transmission resonance modes exist in the band. Their number 
is proportional to m and they occlir via dominant ]/EZ divergencies of the localization length. 
No rransmission is found for S > S,(m). O h  results are understood by solving exactly the 
scattering pmblem f” a single homogeneous impurity block of arbitrary size m. In the limit 
of hard impuritiies (m + 00) transmission stops only when S > S,(m) = 4V, V being the 
intersite mxtrix element: that is when the pure A and B bands become dehched. 

1. Introduction 

There is intensive current interest for problems concerning electronic mnsport and wave 
propagation in disordered lattices [ 1,Z.l. In .the theory of Anderson localization for electrons 
[>5] the simplest kind of a random potential is usually adopted, that is a random on- 
site energy value chosen from .a set of uncorrelated random .numbers. However, the 
existing disorder in the solid often suggests more complex correlated forms of the random 
potential, e.g. by permitting large ordered regions to appear.  in^ general, correlations lead 
to lattice site energies which are no longer independent random variables but relate to the 
corresponding energies of their neighbours within a potential correlation length. There is not 
only theoretical interest in correlations; for example, it is known that short-range order due 
to a spatially correlated potential, when two values oE the potential are involved in a single 
unit cell, is essentially responsible for the presence of gaps in amorphous semiconductors. 
Another reason for the inevitability of disorder correlations arises from the need to be able to 
consider wave-like excitations (light, magnons, phonons, etc) propagating in the continuum. 
It is not usually possible to map these problems to electronic systems with independent site 
(or bond) disorder but disorder correlations must be included. 

Although uncorrelated random models have been extensively studied in the context of 
Anderson localization [I-51, little attention has been paid to the cases where strong short- 
range correlations exist. It is expected that they will lead to new interesting phenomena, 
such as partial delocalization. even in one dimension where all states are expected to be 
localized [5,6].  Such a consequence of correlation is familiar from corresponding magnon 
or phonon studies where delocalization is found at~long wavelengths [6] .  
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In the present paper we focus on the study of random chains with a correlated discrete 
binary distribution of the random potential. The binary choice made for the potential is 
also suggested from physical wavelike propagation phenomena in a medium containing 
homogeneous objects, for example hard spheres, with a density which differs from the rest 
of the medium. In this case it is implied that m type A and m type B sites are involved 
in a single unit cell. In order to create the corresponding random chain instead of A and 
B, large m-site homogeneous blocks, AA.. .A and BB . . . B, are randomly distributed with 
corresponding probabilities p and q = 1 - p ,  respectively. Our simple onedimensional 
model of correlation combines short-range order with long-range disorder contrasting with 
the study of quasi-periodic systems which display long-range order and short-range disorder 

In one dimension, within the tight-binding approximation and for independent s i te  
diagonal randomness chosen from a continuous distribution, there is always a positive 
Lyapunov exponent corresponding to a finite localization length [4,5]. The situation does 
not change much for the discrete disorder case of the random A, B binary alloy which 
corresponds to our model with m~ = 1. Again, all states are localized in accordance with 
well known theorems but the Lyapunov exponent is no longer a differentiable function of 
the energy and becomes a weakly singular measure [SI. 

The results drastically change for the m = 2 'paired' AA, BB random alloy [9-111. At 
most two eigenstates can have diverging localization lengths obeying 1/E2 singularity laws, 
where E is the energy measured from the special energies Eo. From another viewpoint the 
quadratic exponents represent sufficiently strong singularities, being equal to 2/d where 
the dimensionality is d = 1. Hence, they satisfy a generalized Hams criterion [12] which 
inevitably leads to critical behaviour even in one dimension. A corresponding scattering 
study of the problem [ 1 I] revealed that such modes are totally reflectionless and delocalized. 
Moreover, a previous quantum dynamical study 191 pointed out that these short-range pair 
correlations may lead to a superfast type of diffusion for the mean squared displacement 
of a time-evolving wavepacket initially placed at a single site. The superdiffusion is 
intimately connected with the presence of the reflectionless modes and both only occur 
for the weakly disordered paired alloys. The conditions for superfast diffusion to exist 
and reflectionless modes to appear were determined in [9-111: the difference in the site 
energies 6 = I E A  - EB/, which measures the strength of the disorder, must be less than a 
critical value S,(m = 2) = 2V, where V is the corresponding hopping matrix element. 
In the strongly disordered case (8 > 2V) the wavepacket localizes at long times. It is 
interesting to mention that at the intermediate critical disorder 6 = 2V ordinary diffusion 
is obtained and I j E  singularity laws hold instead 191. Similar results have been shown 
[6] to hold for magnon or phonon propagation in one-dimensional systems with ordinary 
uncorrelated continuous disorder in the exchange or force constants, respectively. 

We have studied the general AA.. ,A, BB . . . B random alloy, which consists of 
homogeneous blocks of arbitrary block size m. Our main result is that for weak disorder 
(6 < 6,(m)) delocalized reflectionless modes occur, exactly as for the m = 2 'paired 
case'. We similarly demonstrate that partial delocalization occurs via a set of strong 
1/E2 singularities of the localization length around special energies EO, whose number 
is proportional to m. Moreover, we are able to obtain the corresponding phase diagram 
a&), which demonstrates the refectionless transmission region. 

Our results a e  obtained by petforming a thorough numerical study of the localization 
length and the density of states (Dos) of the arbitrary m block size binary sequences for 
different disorder values as a function of the energy. The numerical method relies on the 
statistical exploration of the product of the corresponding 2 x 2 random transfer matrices 

~71. 
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whose exponential divergence allows computation of the characteristic Lyapunov exponent. 
A general mathematical formalism for tacackling scattering from a large homogeneous block 
is also presented and particular cases are exactly solved. These solutions define a simple 
analytical reasoning which can be used to obtain the critical disorder strength &(m) for any 
length m and allow the corresponding phase diagram to be determined. The resonances 
vanish for S =- S,(m). 

The paper is arranged as follows. In section 2 we introduce the model and results 
for the DOS and the localization length, specializing for convenience to the m = 5 site 
AAAAA, BBBBB fully random alloy case. In order to interpret these results obtained for 
a fifty-fifty correlated random alloy we present in section 3 exact general expressions for 
the reflection coefficient from a single m-site impurity block of B sites embedded in the 
perfect AAA..  . AAAA infinite chain. These analytical results are displayed for m = 5 and 
m = 100 in section 4. In section 5 the way in which the single largeimpurity results can be 
used to identify the localization length singularities for the fully random AA. . .A, BB . . . B 
alloy sequences is shown. The phase diagram, a brief summary of our results and a related 
discussion, also by considering possible extensions and applications of the model, can be 
found in section 6. 

2. The Lyapunov exponent for the m-site correlated AA.  . . A, BB . . . B random alloy 

We shall discuss a tight-binding Hamiltonian corresponding to the binary m-site AA . . .A,  
BB . , . B random alloy electronic problem. It is expressed by the following simple difference 
equation: 

( E  - En)Cn = V(cm-1 + Cn+d (1) 

or, equivalently, via the transfer matrix equation 

n = 0 , 1 , 2  ,..., N (2) 

where E is the energy, V the intersite matrix element c,, the wavefunction amplitude on the 
nth site and the E,S take the values E A  or EB at random subject to the correlation requirement 
that they are distributed in blocks of m sites each. The object of our study is the asymptotic 
behaviour of the random matrix product nn=l,N M,, where the M, are the independent 
random 2 ~ x  2 transfer matrices appearing in equation (2). The real part of the Lyapunov 
exponent is defined as 

with a generic starting vector condition z(0) = (3. The corresponding integrated density 
of states (DOS) is computed via the negative eigenvalue theorem [13]. 

The pure bands due to the A and B sites are centred around E = E A  and E = EB and 
have corresponding bandwidths IE - C A I  < 2 V  and IE - eBl < 2V, respectively. We have 
chosen to display~our results by fixing EA = 0 and varying E B  = S 2 0. In figure 1 we 
present results for the m = 5 site binary alloy, that is for the randomly distributed AAAAA 
and BBBBB blocks of sites with probabilities p = q = 0.5. In the logarithmic y-axis scale 



2806 

of figure 1 it can be seen seen that the localization length diverges at various EO values. We 
tind that it does so following the power law < ( E )  - 1 / ( E  - EO)*. This implies the presence 
of resonances which occur for 6 6 &(m) and for m = 5 we find that S,(m = 5) = 3.618V. 
The corresponding DOS can be extracted from the DOS which is displayed in the same figure. 
In the region of critical energies the DOS is the same as for the pure one-dimensional system 
implying a DOS which obeys the corresponding pure E-'/2 singularity law at the edges. We 
have verified these mentioned singularities for the localization length and the DOS peaks of 
our figures by performing numerical multiplications of up to lo8 transfer matrices. 

S N Evangelou and E N  Ecomnwu 

-2.00 -1.15 -030 0.55 1.40 225 
(4 

Figure 1. The numerically computed localization 
length and the averaged integrated density of shIes 
(mos) for the fifty-fifty m = 5 mdom AAAAA. 
BBBBB binary alloy. The values of S are shown in (a). 
(b) and (c) with V = 1. The data an obtained from 
4 x lo6 long chains and in discrete energy values, no1 
coinciding with the singularities. A maximum number 
of eight dominant singularity peaks is seen in (a). In 
the other cases @s nurnber dimini.&es. Please note I,@ 
the two types of peaks due to the A and B atoms, can 
coincide. 

In the general case of arbitrary size m homogeneous impurities we have observed similar 
singular behaviour which ceases at the critical value 6,(m). We have obtained estimates for 
the ratio S,(m)/V, which is zero form = 1 and varies from 2 for m = 2 to 4 form = CO. 
Moreover, the maximum number of singularities is proportional to 2(m - 1) for the very 
small S values, it decreases for larger 6 < &(m) and vanishes for S z 6,(m). Following the 
same reasoning as in [6,9-111 the divergence of ( ( E )  for a finite chain of length N implies 
f i  propagating states around IEl = EO having fs equal or longer than the system size 
[9]. It must be pointed out that the results of figure 1 principally concern the disordered 
( p  = q = 0.5) bmary AAAAA, BBBBB alloy. The position and form of the dominant 
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singular behaviour is not affected by varying the concentration-only the corresponding 
intensities change [ 111. 

3. Scattering from a single m-site homogeneous impurity block 

In order to understand the results obtained in the previous section for the AA.  . .A,  BB . . . B 
random alloy we have solved exactly the problem of a single BB . . . B impurity of size m 
embedded in an infinite pure A chain. For this purpose the large BB . . . B homogeneous 
impurity is placed on the m consecutive sites contained in n = 0 to m - 1; the rest of the 
sites being only of the kind A. The corresponding initial conditions in terms of the reflection 
and transmission coefficients R, T are: 

+ Re-ikn for n < -1 
for n > m Teikn (4) 

while the amplitudes CO, cl , .  . . , cm-l are the solutions of the following equations: 

( E  -E& = V(c,-l + c.+1) 

( E  - E,& = V(c,-, + c,+I) 

n = 0, 1,2, . . . , m - 1. 

n < -1,  n > m 

(5 )  

(6) 

From equations (4)-(6) we easily obtain CO and cm-~,  i.e. the amplitudes on the first 

c o = l + R  (7) 

(8) 

The equation for the pure A chain is 

and the energy dispersion without the impurity BB . . . B is simply E = 

and last sites inside the impurity, which are given by 

+ 2V cos k .  

and 
cm-l = TeiUm-l) 

respectively. On the other hand, if equation (5)  is written in a transfer matrix form we 
obtain. for the~amplitudes on the last site inside the impurity and the immediate site outside, 

with 

from equation (4). Equation (9) defines the matrix Q 

which has the following symmetry properties: 

Qiz = -QZI (124  

det(Q) = -1,. 

Combining equations (7x12) we finally obtain a general expression for the reflection 
probability amplitude: 

(13) 
(Qli - Qu + ~ Q I Z C O S ~ ) ~  

(Qll - Q ~ + 2 Q 1 ~ ~ 0 s k ) ~ + 4 s i n ~ k '  
IR]'= 

We may now apply this formula to obmn results valid for any m. 



2808 

4. Results for a single 5-site homogeneous impurity 

We have obtained complete analytical expressions for scattering from impurities of various 
sizes m. As an example wc choose, again, the case of m = 5 to display our results. The 
calculation is lengthy but the result for the reflection coefficient is simply given by 

S N Evangelou and E N  Economou 

IR12 = IAI2/IBIZ (14) 

where 

A = 8-((E(E - 2 6 ~ )  - ;V2 + 6;)' - V4) (15) 

and 

(16) 
IB12=A2+4V 10 s i n k .  , 2 

It can be shown that [RIZ vanishes at the following points: 

The form of the expected singular behaviour is obtained if we expand the corresponding 
inverse reflection probability near each of the four resonance points Eo. We find 

where 

The corresponding coefficients near the point EO = E++ are: bo = -Ve(8! -3.23608- V - 
1.3819V2), bl = V7(2S-V - 3.2360V2), bz = V6(104.7218! - 2V2), b3 = 1103.498~V5, 
b4 = 6123.948?V4, bs = 21476.582V3, ba = 48459.682V2, b7 = 65239.18?V, 
bs = 4032081, and if we replace V by -V we obtain the coefficients of the expansion 
near Eo = E-+. Near the point EO = E+- we obtain: bo = -Ve(81 - 1.23608-V - 
3.6180V2), bi = V8(28- - 1.23601/), b2 = V6(15.278681 - 2V2), 63 = 23.489181V5, 
b4 -315.9388ZV4, b5 = -1083.53SZV3, 66 = 3380.4385V2, b, = 24919.18!V, 
bs = 4032082, and by replacing V by - V  we obtain the coefficients near Eo = ~ E - - .  

The behaviour of the reflection probability ]RI2 for m = 5 with EA = 0, EB = 8 3 0 
for various choices of 8/ V: (a), 0.25; (b), 2; and (c) 3 is shown in figure 2. In figure 3 

be seen. 
similar results are shown but for m = 100. If m increases further a band of resonances can 
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I 

deltad25 L -1 hugv 0 1 

delta=2 id -1 0 1 

Figure 2. The reflection probabiliry amplitude 
[RIZ against energy E (equation (14)) for a size 
m = 5, BBBBB impwiry embedded in a periodic 
AAAA.. . AAAA chain. 

5. Comparison between the random A A . .  .A, BE.. . B d o y  and the single BE.. . B 
impurity results 

The first important result of this paper was the exact solution for scattering from a single 
large homogeneous impurity block, as presented in the previous sections. The second 
is recognition of the validity of our single impurity block interpretation for the complete 
problem of the random m-site AA.. .A, BB . . . B alloy. In this section we compare the 
fully random AA.. .A, BB . . .B alloy with the results obtained for a single BB ... B 
homogeneous impurity. We show that the introduction of a percentage of homogeneous 
BB . . . B scatterers does not change the perfect transmission abilities of the special modes 
already present for a single block. This extrapolation is shown to work perfectly well near 
the energies where the reflectionless modes are found. Therefore, we can conclude the 
validity of the single large homogeneous scatterer results at any concentration. 

In order to demonstrate how the single BB . . . B block results embedded in the infinite 
A chain enable us to recover the observed singular behaviour we adopt the expansion 
of [RI-Z from equation (18) in the vicinity of the special zero reflection energies EO 
(equation (17b)). The localization length e for the fully random block binary alloy is 
proportional to [ilog(l - ]RIz)]-', which for small [RI2 near the special modes becomes e o( 2/1RI2. The effect of the many-impurity blocks on the localization len& decreases 
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Energy 

- 2 - 1 0  1 2  3 4 

L 
3 

Figure 3. Re same as in figure 2 but for m = 100. 
Now, a denser set of singularities can be clearly s e n .  

the corresponding intensity but not the position and form of the singular laws. 
In order to demonstrate our previous conclusion we show in figure 4 the localization 

length for a random 5-site block alloy, with p = 0.9, q = 0.1, and various S/V values. In 
comparison with fiaw 1 we observe that the number of singularities remains unaffected 
except for the fact that some peaks now have a reduced intensity. The dominant intensity 
modes are due to the minority BB . . . B blocks embedded in the sea of the A chain. The 
rest of the peaks belong to the reverse situation, that is of the AA. . . A  blocks embedded in 
the B chain. From figure 4 we visualize how the results for one BB . . . B block can expain 
the localization lena$b for the fully random case by plotting 2/IRI2, where IRI2 is obtained 
in equation (14). The position for the rest of the smaller peaks which appear in figure 4 
can also be easily deduced via equation (17b) by interchanging the parameters EA and e~ 
in the single impurity calculation. We should mention that for some values of 6/V some 
of the peaks, from the two types of scatterers A and B, can coincide (figure 4). Finally, in 
the mostly disordered case of p = 0.5 and q = 0.5 the two types of peaks acquire equal 
contibutions in intensity. 

6. Discussion 

We have studied a one-dimensional tight-binding model with binary-alloy-type site 
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5---r--- 1 

0 
-2 -1 0 1 

1 

L~, 
2 3 4 5  

Figure 4. The computed localization length for m = 5 but at unequal concentrations of the 
two species. The AAAAA block occurs with pmbabiiry p = 0.9 and~the BBBBB block with 
q = 0.1. The localization length estimated from the single 5-site BBBBB single homogeneous 
impuriry results is also shown by thin lines. A~similar type of calculation but for an AAAAA 
impurity embedded in the BBBB . . . BBBB chain would reproduce the rest of the weaker pe& 
in the figure (replacing EA with EB in equation (17b)). 

(diagonal) disorder assigned randomly to every m sites in succession. The need for 
considering the random distribution of whole words of sites instead of just letters also 
has a profound significance from a statistical information theory viewpoint, as a means of 
storing information 1141. We have discussed here the quantum transport properties in these 
correlated disorder models following recent findings that for words of length m = 2 the 
exhibited behaviour is markedly different from the usual localization picture obtained for 
m = l .  

We have studied the localization length and the Dos for the general large m-long words 
extending the usual transfer matrix techniques. Our numerical results are displayed both as 
a function of the energy and the degree of disorder expressed by the difference S = I E A - E ~ ~  
and show that the localization length displays many 1 / E 2  singularity peaks. The larger the 
blocks the richer the set of energies where the singularities exist. Thii singular behaviour 
corresponds to delocalized states in the band while the rest of the states are localized. The 
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reason for the partial delocalization is due to the.local order introduced via correlation. We 
obtain a partial explanation of our results by studying scattering from a single impurity 
block. Although the single large-impurity results should only be valid in the limit where 
the impurity concentration is close to zero, it tums out that they remain essentially valid at 
any concentration. The corresponding phase diagram in figure 5 demonstrates *e region of 
the resonance states for an arbitrary lene& of the blocks. 

S N Evangelou and E N  Ecorwimu 

> I /  I 

Figure 5. The phase diagram showing the critical 
S,(m)/ V values against the block size m evaluated from 
the exact results of sections 3 and 4. This diagram holds I LJ 1 1 1  I accurately for arbihary concentpdon of the BB . . . B 

1 2 3 4. 5 6 7 U 9 10 impurity blocks but is essentailly valid for the random 
Size of Impurities AA. .  .A,  BB . . .B block alloy for any p and q. 

It must be mentioned that the strong singular behaviour found in this paper is unrelated 
to the familiar A, B alloy behaviour at energies where the DOS vanishes and the localization 
length is weakly singular. It must also be stressed that, although the present study has 
been l i i t e d  to the binary distribution, we expect similar results for any arbitrary discrete 
distribution. Our results can easily be extended to account for a generalized model where 
the two species have different arbitrary sizes mA and mB, respectively. It is obvious that if 
one of the species bas a length equal to one there will be no peaks due to the corresponding 
atoms. For instance if mA = 1 and mB > 2 the peaks will only he due to the B blocks. If 
m A  > 2 and mB > 2 peaks due to both types will appear in numbers according to their m 
values. In models with a smooth distribution of the site energies, another type of singular 
behaviour in the band is expected as shown in [U]. In fact, the complicated invariant 
measure and the perturbation theory techniques derived for continuous models enabled the 
localization length and the DOS near the special energies for the ‘paired’ m = 2 random 
alloy to be calculated [U]. However, our straightforward approach is much simpler and, as 
shown in this paper, extendable to any length m of the impurities. 

In summary, we focused on the conditions under which partial delocalization occurs for 
weakly disordered ‘block correlated’ random binary alloys via dominant 1 /E2  singularities 
of the localization length. In the present study accurate numerical results demonstrate that 
if 6 < S,(m) partial delocalization exists, a critical situation is expected for 6 = 6,(m) and 
ordinary localization is obtained if F >  S,(m). We have further estimated &(m) for large 
homogeneous impurities at any concentration. Preliminary studies have also shown that 
the reflectionless modes are responsible for a superdiffusive quantum wavepacket transport 
at long times, as was found for m = 2 in [9]. In the range of possible applications for 
our results the properties of onedimensional conductors, such as polyaniline, as well as 
molecular beam epitaxy grown structures consisting of random and quasi-periodic mixtures 
could be included. We can also consider propagation in a medium containing large-size 
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impurities where the novel effects discussed above should appear as a result of the introduced 
short-range spatial correlations. Many other interesting questions still remain in this area 
with the most obvious being the extension of our study of a binary alloy in the presence of 
short-range order to higher dimensions. 
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